Aspects of HF Communications: HF Noise and Signal Features

by

James E. Giesbrecht

M.Sc. (Electrical Engineering) University of Saskatchewan, 1995
B.Sc. (Electrical Engineering) University of Saskatchewan, 1992
B.Sc. (Computer Science) University of Saskatchewan, 1992

Thesis submitted for the degree of

Doctor of Philosophy

in

Electrical and Electronic Engineering The University of Adelaide

2 May 2008

© 2008 James E. Giesbrecht All Rights Reserved

Contents	iii
Abstract	ix
Thesis Declaration	xi
Acknowledgments	×iii
Conventions	xv
Publications	xvii
List of Figures	xix
List of Tables xxv	
I Background	1
Chapter 1. Introduction	3
1.1 Research Motivation	4
1.2 Summary	6
Chapter 2. Background	9
2.1 The Ionosphere	10
2.2 Software Radio	14
2.3 Single Site Location	17
2.4 Signal Separation	25
2.5 Summary	31

Chapter	⁷ 3. Thesis Statement	33
3.1	Organization and Content	34
3.2	Thesis Objectives	35
3.3	Original Contributions	35
3.4	Summary	37
II Pro	obability Density Function of HF Noise	39
Chapter	4. Introduction to HF Noise	41
4.1	A Definition of HF Noise	42
4.2	Literature Review	43
4.3	Summary	46
Chapter	5. Methods for Measuring the PDF of HF Noise	49
5.1	Introduction to Methods	50
5.2	Swept-Narrowband Method	50
5.3	Broadband Method	53
5.4	The Electric Field at each Sampling Instant	54
5.5	Summary	56
Chapter	6. Experimental Setup for Noise Measurements	59
6.1	Receiver Chronology	60
6.2	Swept-Narrowband Receiver	62
6.3	Broadband Receiver	65
6.4	Summary	79
Chapter	7. HF Noise	81
7.1	Introduction to Results	82
7.2	Results of the Swept-Narrowband Method	82
7.3	Results of the Broadband Method	84

7.4	The Effect of the Noise Threshold on the PDF	101
7.5	Bi-Kappa Fit to Data Sets	104
7.6	Noise versus Frequency	109
7.7	Other Supporting Evidence	111
7.8	Summary	115
Chapte	r 8. Conclusions & Further Work for Part II	119
III S	ignal Features for Modulation Recognition	125
Chapte	r 9. Introduction to Modulation Recognition	127
9.1	A Context for Modulation Recognition	128
9.2	Literature Review	129
9.3	Summary	136
Chapte	r 10. Signal Features for Modulation Recognition	139
10.1	Introduction to Methods	140
10.2	Coherence as a Signal Feature	143
10.3	Entropy as a Signal Feature	152
10.4	Signal-to-Noise Ratio as a Signal Feature	161
10.5	Summary	165
Chapte	r 11. Experimental Setup	167
11.1	Receiver Chronology	168
11.2	Narrowband Receiver	170
11.3	Matlab Test Platform	173
11.4	Summary	177
Chapte	r 12. Feature Parameters of the Signal Set	179
12.1	Introduction to Results	180

12.2 Coherence Results	180
12.3 Entropy Results	207
12.4 Signal-to-Noise Ratio	233
12.5 Summary	240
Chapter 13. Conclusions & Further Work for Part III	241
IV Additional Information	251
Symbols	253
Glossary	255
Bibliography	261
Appendix A. Mathematical Derivations and Examples	269
A.1 Derivation of the Modified Bi-Kappa Distribution	270
A.2 Mathematics of Overlapping Segments	275
A.3 Coherence Calculation Examples	277
Appendix B. Data Collection	287
B.1 Data Set for Part II	288
B.2 Data Set for Part III	306
Appendix C. Cascade Analysis of Gain Control System	311
Appendix D. ITU Predicted versus Measured Noise Levels	315
Appendix E. Data Sheets	321
Appendix F. Australian HF Spectrum Allocations	323
Appendix G. (Signs Toolbox Guide	327

G.1	Introduction to (S) igns	328
G.2	Description of the Analysis Process	332
G.3	(Signs Toolbox Reference	340
Append	lix H. §igns Toolbox Code	343
H.1	Signs Configuration Modules	344
H.2	(Signs Initiate Script	356
H.3	(Signs Analysis Modules	358
H.4	(Signs Data Generation	379
H.5	(S) igns Feature Extraction Tools	382
H.6	(S)igns Reporting Tools	403
H.7	(S)igns Miscellaneous Functions	447
H.8	(Signs C Routines	561
Index		587
Biograp	bhy	591
Scientif	fic Genealogy	593

Abstract

To many, high-frequency (HF) radio communications is obsolete in this age of longdistance satellite communications and undersea optical fiber. Yet despite this, the HF band is used by defence agencies for backup communications and spectrum surveillance, and is monitored by spectrum management organizations to enforce licensing. Such activity usually requires systems capable of locating distant transmitters, separating valid signals from interference and noise, and recognizing signal modulation. Research presented here targets the latter issue. The ultimate aim is to develop robust algorithms for automatic modulation recognition of *real* HF signals, where *real* means signals propagating by multiple ionospheric modes with co-channel signals and non-Gaussian noise. However, many researchers adopt Gaussian noise models for signals for the sake of convenience at the cost of accuracy. Furthermore, literature describing the probability density function (PDF) of HF noise does not abound. So an additional aim of this research is measurement of the PDF of HF noise. A simple empirical technique, not found in the literature, is described that supports the hypothesis that HF noise is generally not Gaussian. In fact, the probability density function varies with the time of day, electromagnetic environment, and state of the ionosphere.

Key contributions of this work relate to the statistics of HF noise and the discrimination of real HF signals via three signal features. Through two unique experiments, the density function of natural HF noise is found to closely follow a Bi-Kappa distribution. This distribution can model natural and man-made HF noise through a single control parameter. Regarding signal features, the coherence function is found to be a brute-force technique suitable only for hard (not soft) decisions. A novel application of an entropic distance measure proves able to separate four real HF signals based on their modulation types. And, an estimator for signal-to-noise (SNR) ratio is shown to provide reasonable measures of SNR for the same real HF signals.

Thesis Declaration

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968. Copying or publication or use of this thesis or parts thereof for financial gain is not allowed without the author's written permission. Due recognition shall be given the author, the University of Adelaide, and Ebor Computing in any scholarly use that may be made of any material in the thesis.

2 May 2008

Signature

Date

Acknowledgments

"Hast thou not known? Hast thou not heard, that the everlasting God, the Lord, the Creator of the ends of the earth, fainteth not, neither is weary? There is no searching of his understanding."

-(Isaiah 40:28)

"Mine hand also hath laid the foundation of the earth, and my right hand hath spanned the heavens: when I call unto them, they stand up together."

-(Isaiah 48:13)

The Creator has created a wonderful universe for us to discover. If not for Him, man's insatiable quest for knowledge would cease. To Him, the author offers grateful thanks.

For their support and advice the following organizations and individuals also deserve recognition: The University of Adelaide and Ebor Computing for providing financial assistance for this work; Ebor Computing for providing access to and data from its advanced HF receiver; my supervisors Derek Abbott and Russell Clarke for their guidance; Nigel Brine for providing data for part of the noise analysis from his swept-narrowband receiver; Mathias Baumert for useful discussions; Mark McDonnell for some editorial comments; Withawat Withayachumnankul for help in troubleshooting LATEX2e issues; and most importantly my wife and family for supporting me in this work.

Conventions

The format of this thesis is based on a template created by Greg Harmer and modified by Bradley Ferguson. It is typeset using the LATEX2e software. TeXnicCenter 1 Beta 7.01 was used as the interface to LATEX2e. Harvard style is used for referencing and citation in this thesis. Canadian English spelling is adopted.

MATLAB[®] 6.1 is used for analysis of data and production of plots. Microsoft Excel 2002 is used for some charts and calculations. Microsoft Visio 2002, Microsoft Paint, Picture Publisher, and GSView 4.3 are used for most figures other than those prepared by **MATLAB**[®].

At various points in the thesis, the reader is interrupted by a symbol conveying information. These symbols are used for highlighting important and ancillary information, warnings for the reader on specific issues, and messages for the reader to perform or not perform an action. Important and ancillary information is indicated by an *Information Box* pictured here.

The *Information Box* is used to provide important or additional information for the reader.

On occasion there may be the need to caution the reader about a particular issue. This information is contained in a *Warning Box* as shown below.

On occasion, a *Warning Box* is necessary to caution the reader. Generally, a warning will be associated with operating software, but may also be used at other times.

Rarely, the reader may require a *Stop Box* to explicitly tell the reader to perform or not perform an action. Such a box consists of a STOP sign and attached message.

A *Stop Box* is almost exclusively used to tell the reader critical information regarding the operation of **MATLAB**® scripts or other software.

Publications

- GIESBRECHT, JAMES E.; (2006). "A monitoring tool for HF frequency management and license enforcement," 10th IET International Conference on Ionospheric Radio Systems & Techniques (IRST2006); London, U.K.; (CP517) pp. 263-267; 18–21 July 2006.
- GIESBRECHT, JAMES E.; CLARKE, RUSSELL; & ABBOTT, DEREK; (2006). "Parameters for automatic modulation recognition of HF signals," 10th IET International Conference on Ionospheric Radio Systems & Techniques (IRST2006); London, U.K.; (CP517) pp. 281-285; 18–21 July 2006.
- 3. **GIESBRECHT, JAMES E.**; CLARKE, RUSSELL; & ABBOTT, DEREK; (2006). "An empirical study of the probability density function of HF noise", *Fluctuations and Noise Letters* Vol. 6 No. 2; pp. L117-L125; June 2006.
- 4. **GIESBRECHT, JAMES E.**; CLARKE, RUSSELL; & ABBOTT, DEREK; (2005). "Modulation recognition for real HF signals", *Proc. SPIE Microelectronics: Design, Technology, and Packaging II*. Edited by Alex J. Hariz; Vol. 6035; Art. No. 60351S (12 pages); 5 January 2006.
- GIESBRECHT, JAMES E.; CLARKE, RUSSELL; & ABBOTT, DEREK; (2005). "Coherence as a feature of real HF signals," *Proc. SPIE Noise in Communication Systems*. Edited by Costas N. Georghiades and Langford B. White; Vol. 5847; pp. 188-198; 23 May 2005.
- GIESBRECHT, JAMES E.; CLARKE, RUSSELL; & ABBOTT, DEREK; (2005). "Modulation recognition for HF signals," *Proc. SPIE Smart Structures, Devices, and Systems II*. Edited by Said F. Al-Sarawi; Vol. 5649; pp. 501-512; 28 February 2005.
- GIESBRECHT, JAMES E.; CLARKE, RUSSELL; & ABBOTT, DEREK; (2004). "Monitoring the HF spectrum in the presence of noise," *Proc. SPIE Noise in Communication*. Edited by Langford B. White; Vol. 5473; pp. 76-84; 25 May 2004.
- GIESBRECHT, JAMES E.; CLARKE, RUSSELL; & ABBOTT, DEREK; (2003). "Improved techniques for monitoring the HF spectrum," *Proc. SPIE Microelectronics: Design, Technology, and Packaging*. Edited by Derek Abbott, Kamran Eshraghian, Charles A. Musca, Dimitris Pavlidis, and Neil Weste; Vol. 5274; pp. 112-122; 30 March 2004.

1.1	Overview of the advanced HF receiver	5
2.1	Density profile of Earth's electron plasma	11
2.2	Groundwave and skywave propagation	13
2.3	A conventional superheterodyne receiver	15
2.4	A typical software radio with digital and analog domains	17
2.5	A typical modulation recognition structure	18
2.6	A typical SSL system	19
2.7	A simple model for range calculation in SSL	19
2.8	A typical vertical incidence ionogram	24
2.9	A typical oblique incidence ionogram	24
2.10	Concept of the signal separation technique	26

5.1	Time-based measurement of HF noise PDF	52
5.2	Resulting sequence after excision of environmental noise	56
6.1	Chronology of receiver development	61
6.2	Model of the swept-narrowband receiver	63
6.3	Attenuation of LMR400 coaxial cable	64
6.4	Architecture of the advanced HF receiver (repeated)	65
6.5	Schematic of wideband gain control system	67

6.6	Internal structure of the ICS554 digital receiver	68
6.7	Format of samples generated by the ICS554 digital receiver	70
6.8	A satellite view of Swan Reach, South Australia	72
6.9	Array configuration and antenna construction at Swan Reach	73
6.10	Connections for broadband receivers at Swan Reach	74
6.11	Model of RF chain used for data collection at Swan Reach	75
6.12	Mismatch loss for antennas at Swan Reach	76

7.1	PDF of HF noise measured by the swept-narrowband method $\ldots \ldots$	83
7.2	The PDF of HF noise—06 April 2006, 17:00 hr to 18:30 hr local time	86
7.3	The PDF of HF noise—06 April 2006, 18:30 hr to 20:30 hr local time	89
7.4	The PDF of HF noise—06 April 2006, 20:30 hr to 23:00 hr local time	90
7.5	The PDF of HF noise—07 April 2006, 04:30 hr to 06:30 hr local time	91
7.6	The PDF of HF noise—07 April 2006, 06:30 hr to 07:30 hr local time	92
7.7	The PDF of HF noise—07 April 2006, 07:30 hr to 09:30 hr local time	93
7.8	The PDF of HF noise—07 April 2006, 09:30 hr to 11:00 hr local time	94
7.9	The PDF of HF noise—26 May 2006, 04:50 hr to 07:20 hr local time	97
7.10	The PDF of HF noise—26 May 2006, 07:20 hr to 08:45 hr local time	98
7.11	The PDF of HF noise—26 May 2006, 08:45 hr to 10:20 hr local time	99
7.12	The PDF of HF noise—26 May 2006, 10:20 hr to 10:30 hr local time 1	.00
7.13	The effect of the threshold on the shape of the noise PDF	.03
7.14	A lognormal model for the PDF of atmospheric HF noise in Japan 1	04
7.15	The effect of κ on the modified Bi-Kappa distribution $\ldots \ldots \ldots \ldots \ldots 1$.07
7.16	The PDF of HF noise from Johnson	.08
7.17	Bi-Kappa fit to the HF noise PDF	.09
7.18	Fit of Bi-Kappa Distribution to Swan Reach data	10
7.19	Measured noise levels throughout the day	12
7.20	Measured noise levels versus frequency	13

9.1	A parallel FM/PM recognizer	134
10.1	Common model for analysis of signal features	140
10.2	Power spectra of various real HF signals	141
10.3	Pictoral representation of the CMD for <i>m</i> -ary FSK	146
10.4	Theoretical coherence of two arbitrary sinusoids	148
10.5	Coherence versus SNR at a single frequency	150
10.6	Benedetto's entropy calculation method	155
10.7	Arbitrary spectra for entropic distance calculations	160
11.1	Chronology of receiver development (repeated)	169
11.2	L shaped array for the narrowband receivers	171
11.3	External components for the narrowband receiver	172
11.4	Transmit section of the (Signs toolbox	174
11.5	Receive section of the (Signs toolbox	175
11.6	Modulation recognition section of the Signs toolbox	175
12.1	Coherence estimate at 20% overlap $(m = \frac{2}{3})$	183
12.2	Mean & variance of coherence estimate at 20%, 50%, & 70% overlap	
	$(m=\frac{2}{3})$	185
12.3	Mean & variance of coherence estimate at 20%, 50%, & 70% overlap	
	$(m=\frac{5}{4})$	185
12.4	Mean & variance of coherence estimate at 20%, 50%, & 70% overlap	
	(m=2)	186
12.5	Mean & variance of coherence estimate at 20%, 50%, & 70% overlap	
	$(m=\frac{3}{2})$	186

12.6	Mean, minimum, & maximum as estimators of true coherence	187
12.7	Coherence estimate at 20% overlap $(m = \frac{5}{4})$	188
12.8	Coherence versus SNR	190
12.9	Coherence & CMD of 2-FSK/S signals versus Hamming distance	191
12.10	Coherence versus SNR at various Hamming distances	194
12.11	A synthetic 2-FSK signal	195
12.12	Power spectrum of an FSK Alt. Wide/R signal	196
12.13	Coherence of 2-FSK/S & FSK Alt. Wide/R signals	197
12.14	Coherence of 2-FSK/S & FSK Alt. Wide/R signals for various trials	198
12.15	Power spectrum of another FSK Alt. Wide/R signal	199
12.16	Coherence of two FSK Alt. Wide/R signals received at different times	
	(same antenna)	200
12.17	Power spectrum of another FSK Alt. Wide/R signal (different antenna) .	201
12.18	Coherence of two FSK Alt. Wide/R signals received at the same time	
	(different antennas)	202
12.19	Reference and received Stanag 4285 signals (same antenna)	203
12.20	Coherence of two Stanag 4285 signals (same antenna)	204
12.21	Reference and received Stanag 4285 signals (different antennas)	205
12.22	Coherence of two Stanag 4285 signals (different antennas)	206
12.23	Shannon's entropy vs. Benedetto's entropy (12-bit LZW)	208
12.24	The effect of message length on Benedetto's self-entropy	209
12.25	Effect of probability and message length on Benedetto's self-entropy	210
12.26	A comparison of 12-bit LZW and Zip 2.3 compression algorithms	211
12.27	Benedetto's entropy with Zip 2.3 at various message lengths	211
12.28	Shannon's entropy vs. Benedetto's entropy (Zip 2.3)	212
12.29	Effect of message structure on self-entropy	213
12.30	Effects of quantizer resolution on relative entropy	215
12.31	Effects of quantizer resolution on entropic distance	216
12.32	Self-entropies for 2-FSK/S with LZW compression	217

12.33	Entropic distance between the real signals of Table 10.1
12.34	Entropic distance of real HF signals (16-bit quantizer)
12.35	Entropic distance of real HF signals (9-bit quantizer)
12.36	The MSD measures for various quantizer resolutions
12.37	IEEE 754 double-precision floating-point representation
12.38	Entropic distances for synthetic HF signals (again)
12.39	Histogram of time series data
12.40	Entropic distances for synthetic HF signals with Gaussian noise 229
12.41	Entropic distances between real HF signals (reprised)
12.42	Entropic distances between real HF signals—13-bit LZW compression . 231
12.43	Estimates of SNR for various synthetic digital signals
12.44	Estimates of signal power of various digital signals
12.45	Theoretical average power for various digital signals
12.46	SNR estimation from power spectra of real digital signals

A.1	The effect of range and κ on normalization $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	274
A.2	A vector of overlapping segments	275
A.3	Theoretical coherence of two arbitrary sinusoids (repeated)	283

F.1 Australian HF spectrum allocations	329
F.1 Australian HF spectrum allocations	
	325

G.2	Receive section of the (S) igns toolbox (repeated)	330
G.3	Modulation recognition section of the (S) igns toolbox (repeated)	330
G.4	Directory structure of the Signs Toolbox	332

List of Tables

6.1	Configuration parameters for the GC4016
7.1	Comparison of ITU predicted noise levels and measured noise levels 114
10.1	HF signals used for modulation recognition experiments
12.1	Theoretical coherence values of two arbitrary sinusoids
12.2	Estimating the bias of the signal power estimator
12.3	Comparison of the SNR estimator & SNR from the power spectrum 238
A.1	Normalizing coefficient for the modified Bi-Kappa distribution 273
B.1	Skywave recordings made at Swan Reach SA 6-7 April 2006
B.2	Skywave recordings made at Swan Reach SA 25-26 May 2006
B.3	Files of real HF signals
C.1	Overall noise figure for the wideband gain control system
C.2	Gains & noise figures for the wideband gain control system 313
D.1	Predicted & measured HF noise levels at Swan Reach, South Australia— 06 April 2006
D.2	Predicted & measured HF noise levels at Swan Reach, South Australia— 07 April 2006
D.3	Predicted & measured HF noise levels at Swan Reach, South Australia—26 May 2006319

List of Tables